游客
题文

(本小题满分12分) “上海世博会”于2010年5月1日至10月31日在上海举行。世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,陈列其中的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为此,上海世博会事物协调局将举办“中国2010年上海世博会‘中国馆·贵宾厅’艺术品方案征集”活动。某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应征,假设代表作中中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为。                           
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率;
(2)求该地美术馆选送的四件代表作中至多有两件作品入选“中国馆·贵宾厅”的概率.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆的方程;
(2)若为椭圆的动点,为过且垂直于轴的直线上的点,为椭圆的离心率),求点的轨迹方程,并说明轨迹是什么曲线.

已知双曲线是双曲线的左右顶点,是双曲线上除两顶点外的一点,直线与直线的斜率之积是
求双曲线的离心率;
若该双曲线的焦点到渐近线的距离是,求双曲线的方程.

如图,抛物线关于轴对称,它的顶点在坐标原点,点P(1,2),,均在抛物线上.

(1)求该抛物线方程;
(2)若AB的中点坐标为,求直线AB方程.

已知函数.
(1)如果函数上是单调减函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

已知函数时,都取得极值.
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号