(本小题满分13分)
已知函数的导数
.a,b为实数,
.
(1)若在区间
上的最小值、最大值分别为
、1,求a、b的值;
(2)在 (1) 的条件下,求曲线在点P(2,1)处的切线方程;
(3)设函数,试判断函数
的极值点个数.
已知函数,函数
.
⑴当时,函数
的图象与函数
的图象有公共点,求实数
的最大值;
⑵当时,试判断函数
的图象与函数
的图象的公共点的个数;
⑶函数的图象能否恒在函数
的上方?若能,求出
的取值范围;若不能,请说明理由.
已知函数(
为实数,
),
,⑴若
,且函数
的值域为
,求
的表达式;
⑵设,且函数
为偶函数,判断
是否大0?
⑶设,当
时,证明:对任意实数
,
(其中
是
的导函数) .
如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,
时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,
和
的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设
(弧度),试用
来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
已知的展开式的二项式系数之和为
,且展开式中含
项的系数为
.⑴求
的值;⑵求
展开式中含
项的系数.
已知函数的最小正周期为
.
⑴求函数的对称轴方程;⑵设
,
,求
的值.