(本小题满分13分)已知向量,
,
定义函数=
。
(Ⅰ)求的最小正周期;在所给的坐标系中作出函数
,
∈
的图象
(不要求写出作图过程);
(Ⅱ)若=2,且14≤
≤18,求
的值
(满分12分)直线l 与抛物线y2 = 4x 交于两点A、B,O 为原点,且= -4.
(I)求证:直线l 恒过一定点;
(II)若 4≤| AB | ≤
,求直线l 的
斜率k 的取值范围;
(Ⅲ) 设抛物线的焦点为F,∠AFB = θ,试问θ 角能否
等于120°?若能,求出相应的直线l 的方程;若不能,请说明理由.
(满分12分)设f (x) 是定义在 [-1,1] 上的偶函数,f (x) 与g(x) 的图象关于x =" 1" 对称,且当x Î [2,3] 时,g(x) = a (x-2)-2 (x-2) 3(a 为常数).(Ⅰ)求f (x) 的解析式;
(Ⅱ)若f (x) 在 [0,1] 上是增函数,求实数a 的取值范围;
(Ⅲ)若a Î (-6,6),问能否使f (x) 的最大值为 4?请说明理由.
(满分12分)某专卖店销售一新款服装,日销售量(单位为件)f (n) 与时间n(1≤n≤30、nÎ N*)的函数关系如下图所示,其中函数f (n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.
(Ⅰ)求f (n) 的表达式,及前m天的销售总数;
(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.
(满分12分)某班有两个课外活动小组,其中第一小组有足球票6张,排球票 4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,和乙从第二小组的10张票中任抽1张.
(Ⅰ)两人都抽到足球票的概率是多少?
(Ⅱ)两人中至少有1人抽到足球票的概率是多少?
(满分12分)正方体ABCD-A1B1C1D1 的棱长为 2,且AC 与BD 交于点O,E 为棱DD1 中点,以A 为原点,建立空间直角坐标系A-xyz,如图所示.
(Ⅰ)求证:B1O⊥平面EAC;
(Ⅱ)若点 F 在 EA 上且 B1F⊥AE,试求点 F 的坐标;
(Ⅲ)求二面角B1-EA-C 的正弦值.