双曲线的中心是原点O,它的虚轴长为,右焦点为F(c,0)(c>0),直线:与轴交于点A,且| OF |= 3 | OA |.过点F的直线与双曲线交于P、Q两点.(1)求双曲线的方程; (2)若=0,求直线PQ的方程.
已知点是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足 (1)求数列和的通项公式; (2)若数列{前项和为,问>的最小正整数是多少? .
已知函数 . (1)解不等式; (2)设时,有最小值为,求的值.
在锐角△中,、、分别为角、、所对的边,且 (1)确定角的大小; (2)若,且△的面积为,求的值
(文)已知函数,,且在区间(2、+)上为增函数。 (1)求k的取值范围。 (2)若函数与的图象有三个不同的交点,求实数k的取值范围。
(理)已知函数 (1)求函数的单调区间和极值。 (2)已知函数的图象与函数的图象关于直线对称 证明:当x>1时,。 (3)如果,且,证明:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号