(1)若,求函数
的极值;
(2)若是函数
的一个极值点,试求出
关于
的关系式(用
表示
),并确定
的单调区间;
(3)在(2)的条件下,设,函数
.若存在
使得
成立,求
的取值范围.
(本小题满分15分)在数列中,已知
,
,
.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)设数列满足
,求数列
的前
项和
.
(本小题满分15分)已知,
是平面上的两个定点,动点
满足
.
(Ⅰ)求动点的轨迹方程;
(Ⅱ)已知圆方程为,过圆上任意一点作圆的切线,切线与(Ⅰ)中的轨迹交于
,
两
点,为坐标原点,设
为
的中点,求
长度的取值范围.
(本小题满分15分)如图,在斜三棱柱中,侧面
与侧面
都是菱形,
,
.
(Ⅰ)求证:;
(Ⅱ)若,求二面角
的余弦值.
设函数,其中向量
,
,
.
(Ⅰ)求函数的最小正周期与单调递减区间;
(Ⅱ)在△中,
、
、
分别是角
、
、
的对边,已知
,
,
的面
积为,求
的值.
选修4—5:不等式选讲
已知函数.
(Ⅰ)当时,解不等式
;
(Ⅱ)若不等式的解集包含
,求
的取值范围.