游客
题文

20.(本小题满分14分)
已知抛物线的焦点为,过点作直线交抛物线两点;椭圆的中心在原点,焦点在轴上,点是它的一个顶点,且其离心率
(1)求椭圆的方程;
(2)经过两点分别作抛物线的切线,切线相交于点.证明:
(3)椭圆上是否存在一点,经过点作抛物线的两条切线为切点),使得直线过点?若存在,求出抛物线与切线所围成图形的面积;若不存在,试说明理由.

 

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

如图,在四棱锥中,底面是边长为2的正方形,且=,的中点. 求:
(Ⅰ) 异面直线CM与PD所成的角的余弦值;
(Ⅱ)直线与平面所成角的正弦值.

已知数列是公差大于的等差数列,且满足.
(Ⅰ) 求数列的通项公式;
(Ⅱ)若数列和数列满足等式),求数列的前项和

某学校拟建一块周长为的操场如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽?(精确到,取

中,所对的边分别是,其中,求角的大小和三角形的面积.

(本小题满分14分)已知函数
(1)曲线经过点P(1,2),且曲线C在点P处的切线平行于直线,求a,b的值;
(2)在(1)的条件下试求函数的极小值;
(3)若在区间(1,2)内存在两个极值点,求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号