已知抛物线的焦点为F,以点
为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点。
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由。
已知
是给定的实常数,设函数
,
,
是
的一个极大值点.
(Ⅰ)求
的取值范围;
(Ⅱ)设
是
的3个极值点,问是否存在实数
,可找到
,使得
的某种排列
(其中
)依次成等差数列?若存在,求所有的
及相应的
;若不存在,说明理由.
已知
,直线
,椭圆
,
分别为椭圆
的左、右焦点.
(Ⅰ)当直线
过右焦点
时,求直线
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,
,
的重心分别为
.若原点
在以线段
为直径的圆内,求实数
的取值范围.
如图,在矩形 中,点 分别在线段 上, .沿直线 将 翻折成 ,使平面 .
(Ⅰ)求二面角
的余弦值;
(Ⅱ)点
分别在线段
上,若沿直线
将四边形
向上翻折,使
与
重合,求线段
的长.
如图,一个小球从 处投入,通过管道自上而下落 或 或 。已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到 , , ,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量
为获得
(
)等奖的折扣率,求随机变量
的分布列及期望
;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量
为获得1等奖或2等奖的人次,求
.
在 中,角 所对的边分别为 ,已知 .
(I)求
的值;
(Ⅱ)当
时,求
及
的长.