已知椭圆C:的离心率为
,B,F分别是它的上顶点和右焦点.椭圆C上的点到点F的最短距离为2.圆M是过点B,F的所有圆中面积最小的圆.
(1)求椭圆C和圆M的方程;
(2)从圆外一点P引圆M的切线PQ,切点为Q,且有|PQ|=|PO|,O是坐标原点,求|PF|的最小值.
某校兴趣小组进行了一项“娱乐与年龄关系”的调查,对 15~65岁的人群随机抽取1000人的样本,进行了一次“是否是电影明星追星族”调查,得到如下各年龄段样本人数频率分布直方图和“追星族”统计表:
(1)求的值.
(2)设从45岁到65岁的人群中,随机抽取2人,用样本数据估计总体,表示其中“追星族”的人数,求
分布列、期望和方差.
已知函数.
(1)求的最小正周期;
(2)已知,求
的值.
已知三棱锥P—ABC中,PA=PB,CB⊥平面PAB,PM=MC,AN=3NB。
(1)求证明:MN⊥AB;
(2)当∠APB=90°,BC=2,AB=4时,求MN的长。
如图,在四棱锥中,
平面
,底面
是菱形,
.
(1)求证:平面
(2)若求
与
所成角的余弦值;
如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.
求证:(1)CD⊥PD;(2)EF⊥平面PCD.