游客
题文

给出下列四个结论:
(1)如图中,D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是

(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2, ,n),用最小二乘法建立的线性回归方程为 ,则若该大学某女生身高增加1 cm,则其体重约增加0.85 kg;
(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;
(4)已知随机变量服从正态分布
其中正确结论的个数为( )

A.1 B.2 C.3 D.4
科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知,数列的前n项和为,点在曲线,且
(1)求数列的通项公式;
(2)数列的前n项和为,且满足
求证:数列是等差数列,并求数列的通项公式;

如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB。

(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论;
(3)若AB=2,求三棱锥B-CED的体积

为了迎接省运会,为了降低能源损耗,鹰潭市体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值

在△ABC中,内角A,B,C所对边长分别为.
(1)求的最大值及的取值范围;
(2)求函数的最大值和最小值.

已知
(I)a=2时,求的公共点个数;
(II)a为何值时,的公共点个数恰为两个。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号