某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求
的分布列及
.
(Ⅰ)已知函数(
)的最小正周期为
.求函数
的单调增区间;
(Ⅱ)在中,角
对边分别是
,且满足
.若
,
的面积为
.求角
的大小和边b的长.
一个几何体的三视图如下图所示(单位:),
(1)该几何体是由那些简单几何体组成的;
(2)求该几何体的表面积和体积.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且+
+
=m,求证:a+2b+3c≥9.
已知曲线的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(Ⅰ)写出直线的普通方程与曲线
的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换
得到曲线
,设
为曲线
上任一点,求
的最小值,并求相应点
的坐标.
如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=ACAE=
AB,BD,CE相交于点F.
(Ⅰ)求证:A,E,F, D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.