某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求
的分布列及
.
(本小题满分13分)
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
相交于不同的两点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存直线,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分14分)
已知函数,
.
(Ⅰ)若函数在
处取得极值,试求
的值,并求
在点
处的切线方程;
(Ⅱ)设,若函数
在
上存在单调递增区间,求
的取值范围.
(本小题满分13分)
如图,在三棱柱中,每个侧面均为正方形,
为底边
的中点,
为侧棱
的中点,
与
的交点为
.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面
.
(本小题满分13分)
袋子中装有编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.
(Ⅰ)写出所有不同的结果;
(Ⅱ)求恰好摸出1个黑球和1个红球的概率;
(Ⅲ) 求至少摸出1个黑球的概率.
(本小题满分13分)
在中,角
,
,
所对的边分别为
,
,
,且
,
.
(Ⅰ)求,
的值;
(Ⅱ)若,求
,
的值.