设函数(1)设,,证明:在区间内存在唯一的零点;(2)设为偶数,,,求的最小值和最大值;(3)设,若对任意,有,求的取值范围;
已知函数。 (1)讨论的奇偶性; (2)判断在上的单调性并用定义证明。
已知函数,满足; (1)若方程有唯一的解;求实数的值; (2)若函数在区间上不是单调函数,求实数的取值范围。
已知函数是定义在上的奇函数,当时, (1)求的值; (2)当时,求的解析式;
已知集合, 求:(1);(2)
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率. (Ⅰ)求椭圆的标准方程; (Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号