游客
题文

设函数,的两个极值点为,线段的中点为.
(1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心;
(2) 如果点在第四象限,求实数的范围;
(3) 证明:点也在函数的图象上,且为函数图象的对称中心.

科目 数学   题型 解答题   难度 容易
知识点: 函数迭代
登录免费查看答案和解析
相关试题

((本小题满分10分)
选修4—4:坐标系与参数方程
已知直线的参数方程为为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点.
(1)写出直线的极坐标方程与曲线C的普通方程;
(2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.

(.选修4—1:几何证明选讲
如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转到O D.

(1)求线段PD的长;
(2)在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由.

(.(本题满分12分)
已知二次函数和“伪二次函数”),
(I)证明:只要,无论取何值,函数在定义域内不可能总为增函数;
(II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为
i)求证:
(ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.

((本题满分12分)
已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于两点,线段的垂直平分线与轴相交于点
(Ⅰ)求的取值范围;
(Ⅱ)求△面积的最大值.

(本小题满分12分)
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.

(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号