(本小题满分13分)已知函数.
(Ⅰ)若求函数
在
上的最大值;
(Ⅱ)若对任意,有
恒成立,求
的取值范围.
(本小题满分12分)设平面向量,
,函数
.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数的单调递增区间.
(本小题满分10分)铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法为:行李质量不超过,按
元
计算;超过
而不超过
时,其超过部分按
元
计算,超过
时,其超过部分按
元
计算.设行李质量为
,托运费用为
元.
(Ⅰ)写出函数的解析式;
(Ⅱ)若行李质量为,托运费用为多少?
(本小题满分10分)
(Ⅰ)证明:.
(Ⅱ)已知圆的方程是,则经过圆上一点
的切线方程为:
,类比上述性质,试写出椭圆
类似的性质.
(本小题满分13分)已知函数,
,其中
,
为自然对数的底数.
(Ⅰ)求在
上的最小值;
(Ⅱ)试探究能否存在区间,使得
和
在区间
上具有相同的单调性?若能存在,说明区间
的特点,并指出
和
在区间
上的单调性;若不能存在,请说明理由.