已知椭圆为其左、右焦点,A为右顶点,l为左准线
,过
的直线
与椭圆相交于P,Q两点,且有
(1)求椭圆C的离心率e的最小值;
(2),求证:M,N两点的纵坐标之积是定值。
已知抛物线C:的焦点为F,直线
交抛物线
于
、
两点,
是线段
的中点,过
作
轴的垂线交抛物线
于点
.
(1)若直线AB过焦点F,求的值;
(2)是否存在实数,使
是以
为直角顶点的直角三角形?若存在,求出
的值;若不存在,说明理由.
如图,在三棱锥中,△PAB和△CAB都是以AB为斜边的等腰直角三角形, 若
,D是PC的中点
(1)证明:;
(2)求AD与平面ABC所成角的正弦值.
已知数列满足
,若
为等比数列,且
.
(1)求;
(2)设,求数列
的前n项和
.
在△ABC中,角所对的边分别为a,b,c,
(1)求角A;
(2)若2sinC="3sinB," △ABC的面积,求a.
各项为正的数列满足
,
,
(1)取,求证:数列
是等比数列,并求其公比;
(2)取时令
,记数列
的前
项和为
,数列
的前
项之积为
,求证:对任
意正整数,
为定值.