游客
题文

已知抛物线的顶点为坐标原点,椭圆的对称轴是坐标轴,抛物线轴上的焦点恰好是椭圆的焦点
(Ⅰ)若抛物线和椭圆都经过点,求抛物线和椭圆的方程;
(Ⅱ)已知动直线过点,交抛物线两点,直线被以为直径的圆截得的弦长为定值,求抛物线的方程;
(Ⅲ)在(Ⅱ)的条件下,分别过的抛物线的两条切线的交点的轨迹为,直线与轨迹交于点,求的最小值。

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

中,内角对边分别为,且.
(Ⅰ)求角的大小;
(Ⅱ)若,求的值.

已知椭圆的中心为坐标原点O,焦点在轴上,离心离为,点B是椭圆短轴的下端点. B到椭圆一个焦点的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于两点,且,求直线的方程.

投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n年的纯利润总和(年总收入 前年的总支出 投资额72万元)
(Ⅰ)该厂从第几年开始盈利?
(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值.

“坐标法”是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究图形的几何性质的方法,它是解析几何中是基本的研究方法. 请用坐标法证明下面问题:
已知圆O的方程是,点,P、Q是圆O上异于A的两点.证明:弦PQ是圆O直径的充分必要条件是.

在四棱锥中,底面是正方形,侧棱底面,点的中点,作.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号