(本题满分16分,第(1)小题6分,第(2)小题10分)
如图,弯曲的河流是近似的抛物线,公路
恰好是
的准线,
上的点
到
的距离最近,且为
千米,城镇
位于点
的北偏东
处,
千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路
以便建立水陆交通网.
(1)建立适当的坐标系,求抛物线的方程;
(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头的位置),并求公路总长的最小值(精确到0.001千米)
(本题12分)已知△ABC的内角A、B、C的对边分别为,向量
,且满足
.
(1)若,求角
;
(2)若,△ABC的面积
,求△ABC的周长.
(本题12分)已知数列的前n项和为
满足:
.
(1)求证:数列是等比数列;
(2)令,对任意
,是否存在正整数m,使
都成立?若存在,求出m的值;若不存在,请说明理由.
(本题12分)在中,a、b、c分别为角A、B、C的对边,若
.
(Ⅰ)求角A的度数;
(Ⅱ)若,
,求边长b和角B的值.
(本题12分)设是等差数列,
是各项都为正数的等比数列,且
,
,
(Ⅰ)求,
的通项公式;
(Ⅱ)求数列的前n项和
.
已知等差数列满足:
,
,
的前n项和为
.
(Ⅰ)求及
;
(Ⅱ)令bn=(n
N*),求数列
的前n项和
.