(本小题满分12分)
已知函数其中a为常数,且
.
(Ⅰ)当时,求
在
(e=2.718 28…)上的值域;
(Ⅱ)若对任意
恒成立,求实数a的取值范围.
甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人.
(1)根据以上数据建立一个的列联表;(2)试判断成绩与班级是否有关?
参考公式:;
P(K2>k) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.84 |
5.024 |
6.635 |
7.879 |
10.83 |
已知函数在
及
处取得极值.
(1)求、
的值;(2)求
的单调区间.
以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐极系,并在两种坐极系中取相同的长度单位.已知直线的极坐标方程为
(
),它与曲线
(
为参数)相交于两点A和B,求AB的长.
已知椭圆:
经过点
,其离心率
.
(1)求椭圆的方程;
(2)过坐标原点作不与坐标轴重合的直线
交椭圆
于
两点,过
作
轴的垂线,垂足为
,连接
并延长交椭圆
于点
,试判断随着
的转动,直线
与
的斜率的乘积是否为定值?说明理由.
已知函数,函数
的导函数
,且
,其中
为自然对数的底数.
(1)求的极值;
(2)若,使得不等式
成立,试求实数
的取值范围;