已知数列中,
,
,其前
项和
满足
,令
.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求证:
① 对于任意正整数,都有
;
② 对于任意的,均存在
,使得
时,
.
(本小题满分16分)已知函数,
,且
.
(1)当时,求函数
的减区间;
(2)求证:方程有两个不相等的实数根;
(3)若方程的两个实数根是
,试比较
,
与
的大小,并说明理由.
(本小题满分16分)如图,为椭圆
:
(a>b>
)的左、右焦点,
是椭圆的两个顶点,椭圆的离心率
,△
的面积为
.若
在椭圆
上,则点
称为点
的一个“椭点”.直线
与椭圆交于
两点,
两点的“椭点”分别为
,已知以
为直径的圆经过坐标原点.
(1)求椭圆的标准方程;
(2)△的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
(本小题满分14分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD = AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,
.
(1)求区域Ⅱ的总面积;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元. 试问当为多少时,年总收入最大?
(本小题满分14分)如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形.
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D—BCM的体积.
(本小题满分14分)已知向量,
,
.
(1)若,求向量
,
的夹角
;
(2)若,函数
的最大值为
,求实数
的值.