在数列 a n 中, a 1 = 0 ,且对任意 k ∈ N * , a 2 k - 1 , a 2 k , a 2 k + 1 成等差数列,其公差为 2 k . (Ⅰ)证明 a 4 , a 5 , a 6 成等比数列; (Ⅱ)求数列 a n 的通项公式; (Ⅲ)记 T n = 2 2 a 2 + 3 2 a 3 + ⋯ + n 2 a n ,证明 3 2 < 2 n - T n ≤ 2 n ≥ 2 .
(本小题满分12分)已知定义在区间(-1,1)上的函数为奇函数。且.(1)求实数的值。 (2)求证:函数(-1,1)上是增函数。 (3)解关于。
(本小题共12分)已知为等差数列,且,。(Ⅰ)求的通项公式;(Ⅱ)若等比数列满足,,求的前n项和公式
(本小题满分10分)设全集 , 有实数根 求。
二次函数
已知函数. (1)若,求的值; (2)若对于恒成立,求实数的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号