已知函数 f x = x - 1 x + a + ln x + 1 其中实数 a ≠ 1 . (I)若 a = - 2 ,求曲线 y = f x 在点 0 , f 0 处的切线方程; (II)若 f x 在 x = 1 处取得极值,试讨论 f x 的单调性.
设,函数. (1)若,求函数的极值与单调区间; (2)若函数的图象在处的切线与直线平行,求的值; (3)若函数的图象与直线有三个公共点,求的取值范围.
已知向量,,且. (1)当时,求; (2)设函数,求函数的最值及相应的的值.
单调递增数列的前项和为,且满足, (1)求数列的通项公式; (2)数列满足,求数列的前项和.
已知函数的周期为,其中. (Ⅰ)求的值及函数的单调递增区间; (Ⅱ)在中,设内角A、B、C所对边的长分别为a、b、c,若,,f(A)=,求b的值.
设递增等差数列的前项和为,已知,是和的等比中项. (1)求数列的通项公式;(2)求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号