某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.
(1)求走出迷宫时恰好用了1小时的概率;
(2)求走出迷宫的时间超过3小时的概率.
记公差不为0的等差数列的前
项和为
,S3=9,
成等比数列.
(1)求数列的通项公式
及
;
(2)若, n=1,2,3, ,问是否存在实数
,使得数列
为单调递增数列?若存在,请求出
的取值范围;不存在,请说明理由.
在△ABC中,a,b,c分别是内角A,B,C的对边,.
(1)若,求△ABC的面积S△ABC;
(2)若是边
中点,且
,求边
的长.
已知函数f (t)=log2(2-t)+的定义域为D.
(1)求D;
(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π.
(1)求ω的值;
(2)求函数在[
,
]上的最大值.
已知函数(m,n为常数,
…是自然对数的底数),曲线
在点
处的切线方程是
.
(1)求m,n的值;
(2)求的单调区间;
(3)设(其中
为
的导函数),证明:对任意
,
.