如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 ( 1 , 2 2 ) ,离心率为 2 2 ,左、右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D , O 为坐标原点.
(I)求椭圆的标准方程; (II)设直线 P F 1 、 P F 2 的斜线分别为 k 1 , k 2 . (i)证明: 1 k 1 - 3 k 2 = 2 ; (ii)问直线 l 上是否存在点 P ,使得直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.
已知三棱锥中,,平面,分别是直线上的点,且 (1) 求二面角平面角的余弦值 (2) 当为何值时,平面平面
如图:三棱柱中,,,侧棱底面,为的中点,为边上的动点。 (1)若为中点,求证:平面 (2)若,求四棱锥的体积。
如图:正方体的棱长为1,点分别是和的中点 (1)求证: (2)求异面直线与所成角的余弦值。
已知圆满足以下三个条件:(1)圆心在直线上,(2)与直线相切,(3)截直线所得弦长为6。求圆的方程。
求通过两条直线和的交点,且距原点距离为1的直线方程。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号