(本题12分)口袋里放了12个大小完全一样的小球,其中3个是红色的,
4个是白色的,5个是蓝色的,现从袋中任意取出4个小球,求:
(1) 取出的小球的颜色至少是两种的概率;
(2) 取出的小球的颜色是三种的概率.
(本小题满分13分)
已知双曲线的右顶点为A,右焦点为F,右准线与
轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又
,
过点F的直线与双曲线右交于点M、N,点P为点M关于
轴的对称点。
(1)求双曲线的方程;
(2)证明:B、P、N三点共线;
(3)求面积的最小值。
.(本小题满分13分)
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数f(x)模型制定奖励方案,试用数学语言表述公司对奖励函数f(x)模型
的基本要求;
(2)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型
是否符合公司要求?
(本小题满分12分)
已知数列的前n项和
满足
(a>0,且
)。数列
满足
(1)求数列的通项。
(2)若对一切都有
,求a的取值范围。
(本小题满分12分)
在长方体中,
点
是
上的动点,点
为
的中点.
(1)当点在何处时,直线
//平面
,并证明你的结论;
(2)在(Ⅰ)成立的条件下,求二面角的大小.
设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,是坐标原点,且
,
.
(Ⅰ)若点Q的坐标是,求
的值;
(Ⅱ)设函数,求
的值域.