(本小题满分14分)
如图,四边形为矩形,
且
平面
,
为
上的点,且
平面
(1)设点为线段
的中点,点
为线段
的中点,求证:
∥平面
(2)求证
(3)当时,求三棱锥
的体积。
已知满足不等式
,求函数
的最小值.
已知集合,
(1)若,求实数
的值;
(2)设全集为R,若,求实数
的取值范围。
若定义在上的奇函数
满足当
时,
.
(1)求在
上的解析式;
(2)判断在
上的单调性,并给予证明;
(3)当为何值时,关于方程
在
上有实数解?
已知函数
(1)当时,求函数
的定义域、值域及单调区间;
(2)对于,不等式
恒成立,求正实
数
的取值范围.
某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本(万元)与年产量
(吨)之间的函数关系式近似地表示为
.问:(1)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润;
(2)年产量为多少吨时,每吨的平均成本最低?并求出最低成本。