(本小题满分14分)已知函数
,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n ÎN *),x1=4.
(Ⅰ)用
表示xn+1;
(Ⅱ)记an=lg
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若bn=xn-2,试比较
与
的大小.
(本题共3小题,满分18分。第1小题满分4分,第2小题满分7分,第3小题7分)
对定义在
上,并且同时满足以下两个条件的函数
称为
函数.
① 对任意的
,总有
;
② 当
时,总有
成立.
已知函数
与
是定义在
上的函数.
(1)试问函数
是否为
函数?并说明理由;
(2)若函数
是
函数,求实数
的值;
(3)在(2)的条件下,是否存在实数
,使方程
恰有两解?若存在,求出实数
的取值范围;若不存在,请说明理由.
(本题共3小题,满分16分。第1小题满分4分,第2小题满分6分,第3小题6分)
设数列
的前
项和为
,若对任意的
,有
且
成立.
(1)求
、
的值;
(2)求证:数列
是等差数列,并写出其通项公式
;
(3)设数列
的前
项和为
,令
,若对一切正整数
,总有
,求
的取值范围.
(本题共2小题,满分14分。第1小题满分6分,第2小题满分8分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到
辆/千米时,造成堵塞,此时车流速度为
千米/小时;当车流密度不超过
辆/千米时,车流速度为
千米/小时,研究表明;当
时,车流速度
是车流密度
的一次函数.
(1)求函数
的表达式;
(2)当车流密度
为多大时,车流量(单位时间内通过桥上某一点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时).
(本题共2小题,满分14分。第1小题满分7分,第2小题满分7分)
定义:
,若已知函数
(
且
)满足
.
(1)解不等式:
;
(2)若
对于任意正实数
恒成立,求实数
的取值范围.
(本题共2小题,满分12分。第1小题满分6分,第2小题满分6分)
已知复数
,
(
),且
.
(1)设
=
,求
的最小正周期和单调递增区间.
(2)当
时,求函数
的值域.