8分)
已知集合,集合
,且
,求
的值.
已知点F(1,0),圆E:,点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹Γ的方程;
(2)若直线与圆O:
相切,并与(1)中轨迹Γ交于不同的两点A、B.当
=
,且满足
时,求△AOB面积S的取值范围.
(本小题满分12分)如图,在四棱锥中,
平面
,
,四边形
满足
,
且
,点
为
中点,点
为
边上的动点,且
.
(1)求证:平面平面
;
(2)是否存在实数,使得二面角
的余弦值为
?若存在,试求出实数
的值;若不存在,说明理由.
(本题12分)已知数列的前
项和为
,且
,其中
(1)求数列的通项公式;
(2)若,数列
的前
项和为
,求证:
【改编】(本小题满分12分)函数部分图象如图所示.
(Ⅰ)求的最小正周期及解析式;
(Ⅱ)设,求函数
在区间
上的单调性.
设函数的定义域是
,其中常数
.
(1)若,求
的过原点的切线方程.
(2)当时,求最大实数
,使不等式
对
恒成立.
(3)证明当时,对任何
,有
.