在一个盒子里装有6枝圆珠笔,其中3枝一等品,2枝二等品,1枝三等品.
(1)从盒子里任取3枝恰有1枝三等品的概率多大?;
(2)从盒子里任取3枝,设为取出的3枝里一等品的枝数,求
的分布列及数学期望.
已知函数
(1)当时,求
的最大值及相应的x值;
(2)利用函数y=sin的图象经过怎样的变换得到f(x)的图象.
如果项数均为的两个数列
满足
且集合
,则称数列
是一对“
项相关数列”.
(Ⅰ)设是一对“4项相关数列”,求
和
的值,并写出一对“
项
关数列”;
(Ⅱ)是否存在“项相关数列”
?若存在,试写出一对
;若不存在,请说明理由;
(Ⅲ)对于确定的,若存在“
项相关数列”,试证明符合条件的“
项相关数列”有偶数对.
已知函数,
.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设点为函数
的图象上任意一点,若曲线
在点
处的切线的斜率恒大于
,
求的取值范围.
已知函数,
.
(Ⅰ)若函数在
上至少有一个零点,求
的取值范围;
(Ⅱ)若函数在
上的最大值为
,求
的值.