(本小题满分14分)
为了检测某种产品的直径(单位mm),抽取了一个容量为100的样本,其频率分布表(不完整)如下:
分组 |
频数累计 |
频数 |
频率 |
[10.75,10.85) |
6 |
6 |
0.06 |
[10.85,10.95) |
15 |
9 |
0.09 |
[10.95,11.05) |
30 |
15 |
0.15 |
[11.05,11.15) |
48 |
18 |
0.18 |
[11.15,11.25) |
▲ |
▲ |
▲ |
[11.25,11.35) |
84 |
12 |
0.12 |
[11.35,11.45) |
92 |
8 |
0.08 |
[11.45,11.55) |
98 |
6 |
0.06 |
[11.55,11.65) |
100 |
2 |
0.02 |
(Ⅰ)完成频率分布表;
(Ⅱ)画出频率分布直方图;
(Ⅲ)据上述图表,估计产品直径落在范围内的可能性是百分之几?
(本小题满分16分)己知函数
(1)若,求函数
的单调递减区间;
(2)若关于x的不等式 恒成立,求整数 a的最小值:
(3)若 ,正实数
满足
,证明:
(本小题满分16分)在数列 中,已知
,
为常数.
(1)证明: 成等差数列;
(2)设 ,求数列 的前n项和
;
(3)当时,数列
中是否存在三项
成等比数列,且
也成等比数列?若存在,求出
的值;若不存在,说明理由.
(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
(本小题满分14分)在平面直角坐标系xOy中,己知点 ,C, D分别为线段OA, OB上的动点,且满足AC=BD.
(1)若AC=4,求直线CD的方程;
(2)证明:OCD的外接圆恒过定点(异于原点O).
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CP
PB,求证:CP
PA:
(2)若过点A作直线⊥平面ABC,求证:
//平面PBC.