为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的 、 、 ,现在3名工人独立地从中任选一个项目参与建设。
(1)求他们选择的项目所属类别互不相同的概率;
(2)记 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。
(本小题满分13分)如图,椭圆的离心率为
,
轴被曲线
截得的线段长等于
的短轴长。
与
轴的交点为M,过坐标原点O的直线
与
相交于点A、B.
(1)求,
的方程;
(2)求证:MA⊥MB.
(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(1)证明:平面平面
;
(2)若,
, 令AE与平面ABCD所成角为
, 且
, 求该四棱锥
的体积.
(本小题满分12分)已知双曲线, 若双曲线的渐近线过点
, 且双曲线过点
(1)求双曲线的方程;
(2)若双曲线的左、右顶点分别为
,点
在
上且直线
的斜率的取值范围是
,求直线
斜率的取值范围.
(本小题满分10分)
(1)设函数,其中θ∈
,求导数
的取值范围;
(2)若曲线与曲线
在它们的公共点
处具有公共切线,
求公共切线的方程.
(本小题满分10分)设命题p:函数的定义域为R, 命题q:双曲线
的离心率
,
(1)如果p是真命题,求实数的取值范围;
(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围.