某部队进行射击训练,每个学员最多只能射击4次,学员如有2次命中目标,那么就不再继续射击。假设某学员每次命中目标的概率都是
,每次射击互相独立。
(1)求该学员在前两次射击中至少有一次命中目标的概率;
(2)记该学员射击的次数为
,求
的分布列及数学期望。
在
中,角A,B,C所对的边分别为
(Ⅰ)叙述并证明正弦定理;
(Ⅱ)设
,
,求
的值.
已知在等比数列
中,
,且
是
和
的等差中项.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若数列
满足
,求
的前
项和
.
已知函数
,
.
(Ⅰ)若曲线
在
与
处的切线相互平行,求
的值及切线斜率;
(Ⅱ)若函数
在区间
上单调递减,求
的取值范围;
(Ⅲ)设函数
的图像C1与函数
的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线
的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线
交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得
始终平分
?若存在求出
点坐标;若不存在请说明理由.
如图,四棱锥S-ABCD中,SD
底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=SD=2,E为棱SB上任一点.
(Ⅰ)求证:无论E点取在何处恒有
;
(Ⅱ)设
,当平面EDC
平面SBC时,求
的值;
(Ⅲ)在(Ⅱ)的条件下求二面角
的大小.