(本小题满分10分)
已知,,求证:
不能同时大于
。
已知函数和
的图象关于
轴对称,且
.
(1)求函数的解析式;
(2)当时,解不等式
.
已知,
,
.
(1)若,求
的值;
(2)设,若
,求
、
的值.
设函数.
(1)当,
时,求函数
的最大值;
(2)令,其图象上存在一点
,使此处切线的斜率
,求实数
的取值范围;
(3)当,
时,方程
有唯一实数解,求正数
的值.
新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不低于
万元,同时不超过投资收益的
.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型
的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
①;②
试分别分析这两个函数模型是否符合公司要求.
如图,游客在景点处下山至
处有两条路径.一条是从
沿直道步行到
,另一条是先从
沿索道乘缆车到
,然后从
沿直道步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
.假设缆车匀速直线运动的速度为
,索道
长为
,经测量
,
.
(1)求山路的长;
(2)假设乙先到,为使乙在处等待甲的时间不超过
分钟,乙步行的速度应控制在什么范围内?