游客
题文

已知函数f(x)是 (xR)的反函数,函数g(x)的图象与函数的图象关于直线x=-2成轴对称图形,设F(x)=f(x)+g(x).
(1)求函数F(x)的解析式及定义域;
(2)试问在函数F(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直?若存在,求出A,B坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值.

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点
求证:(1)直线EF//平面PCD;(2)平面BEF⊥平面PAD

已知椭圆Gy2=1.过点(m,0)作圆x2y2=1的切线l交椭圆GAB两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将|AB|表示为m的函数,并求|AB|的最大值.

已知点是⊙上的任意一点,过垂直轴于,动点满足
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使(O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由

已知圆为圆心且经过原点O.
(1)若,写出圆的方程;
(2)在(1)的条件下,已知点的坐标为,设分别是直线和圆上的动点,求的最小值及此时点的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号