(本小题12分)
盒子中装着标有数字1、2、3、4的卡片分别有1张、2张、3张、4张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用
表示取出的3张卡片的最大数字,求:
(Ⅰ)取出的3张卡片上的数字互不相同的概率;
(Ⅱ)随机变量
的概率分布和数学期望;
(Ⅲ)设取出的三张卡片上的数字之和为
,求
.
已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.
已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中点.
求:(1)Q到BD的距离;
(2)P到平面BQD的距
如图,在梯形ABCD中,AD∥BC,∠ABC=
,AB=
AD=a,
∠ADC=arccos
,PA⊥面ABCD且PA=a.
(1)求异面直线AD与PC间的距离;
(2)在线段AD上是否存在一点F,使点A到平面PCF的距离为

如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.
(1)求点A到平面B1BCC1的距离;
(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.