(本小题12分)
盒子中装着标有数字1、2、3、4的卡片分别有1张、2张、3张、4张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片的最大数字,求:
(Ⅰ)取出的3张卡片上的数字互不相同的概率;
(Ⅱ)随机变量的概率分布和数学期望;
(Ⅲ)设取出的三张卡片上的数字之和为,求
.
(本小题满分12分)
如图,在平面直角坐标系中,锐角和钝角
的终边分别与单位圆交于
,
两点.
⑴如果、
两点的纵坐标分别为
、
,求
和
;
⑵在⑴的条件下,求的值;
⑶已知点,求函数
的值域.
已知函数.
(Ⅰ)若,试讨论函数
的单调性;
(Ⅱ)设.如果对任意
,
,求
的取值范围.
已知椭圆两焦点分别为F1、F2、P是椭圆在第一象限弧上一点,并满足
,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点
(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值。
已知斜三棱柱,
,
,
在底面
上的射影恰为
的中点
,又知
。
(I)求证:平面
;
(II)求二面角余弦值的大小。
已知等差数列,公差大于
,且
是方程
的两根,数列
前
项和
.
(Ⅰ)写出数列、
的通项公式;
(Ⅱ)记,求证: