如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.(1)求点C到平面PBD的距离;(2)在线段上是否存在一点,使与平面所成的角的正弦值为,若存在,指出点的位置,若不存在,说明理由.
⊙O1和⊙O2的极坐标方程分别为 (1)⊙O1和⊙O2的极坐标方程化为直角坐标方程; (2)求经过⊙O1和⊙O2交点的直线的直角坐标方程。
已知正数满足:. (Ⅰ) 求证:;(Ⅱ)求的最大值.( )
已知直线L过点P(2,0),斜率为相交于A,B两点,设线段AB的中点为M,求: (1)P,M两点间的距离/PM/: (2)M点的坐标; (3)线段AB的长;
已知函数。 (Ⅰ)若函数的图象关于点对称,且,求的值; (Ⅱ)设,若,求实数的取值范围
抛物线上有两点,且, (1)求证:; (2)若,求面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号