如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求点C到平面PBD的距离;(2)在线段
上是否存在一点
,使
与平面
所成的角的正弦值为
,若存在,
指出点的位置,若不存在,说明理由.
如图,已知圆,点
.
(1)求圆心在直线上,经过点
,且与圆
相外切的圆
的方程;
(2)若过点的直线
与圆
交于
两点,且圆弧
恰为圆
周长的
,求直线
的方程.
如图,长方体中,
,点
为
的中点.
(1)求证:直线平面
;
(2)求证:平面平面
;
(3)求与平面
所成的角大小.
设全集为,集合
,
.
(1)求如图阴影部分表示的集合;
(2)已知,若
,求实数
的取值范围.
已知直线经过直线
与直线
的交点
,且垂直于直线
.
(1)求直线的方程;
(2)求直线关于原点
对称的直线方程.
如果函数满足在集合
上的值域仍是集合
,则把函数
称为N函数.
例如:就是N函数.
(Ⅰ)判断下列函数:①,②
,③
中,哪些是N函数?(只需写出判断结果);
(Ⅱ)判断函数是否为N函数,并证明你的结论;
(Ⅲ)证明:对于任意实数,函数
都不是N函数.
(注:“”表示不超过
的最大整数)