游客
题文

某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为 a 1 ,以后每年交纳的数目均比上一年增加 d d > 0 ,因此,历年所交纳的储务金数目 a 1 a 2 ,…是一个公差为 d 的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为 r r > 0 ,那么,在第 n 年末,第一年所交纳的储备金就变为 a 1 1 + r a - 1 ,第二年所交纳的储备金就变为 a 2 1 + r a - 2 ,……,以 T n 表示到第 n 年末所累计的储备金总额.

(Ⅰ)写出 T n T n - 1 n 2 的递推关系式;
(Ⅱ)求证: T n = A n + B n ,其中 A n 是一个等比数列, B n 是一个等差数列.

科目 数学   题型 解答题   难度 较难
知识点: 等比数列
登录免费查看答案和解析
相关试题


(本小题满分13分)
已知函数),且函数的最小正周期为.
⑴求函数的解析式;
⑵在△中,角所对的边分别为.若,且,试求的值.

(23)(本小题满分10分)选修4-4:坐标系与参数方程
已知直线C1(t为参数),C2为参数),
(Ⅰ)当=时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O作 C1的垂线,垂足为A,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线.

请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,已经⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O、BD于点E、F,连结CE.

(Ⅰ) 求证:AG·EF=CE·GD;
(Ⅱ) 求证:

(本小题满分12分)
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ) 求三角形ABC顶点C的轨迹方程;
(Ⅱ) 设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,
满足OP⊥ON,求直线的方程.

(本小题满分12分)
设函数f(x)=lnxg(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.
(Ⅰ) 求a、b的值;
(Ⅱ) 设x>0,试比较f(x)与g(x)的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号