游客
题文

(本小题满分12分)
已知函数是定义在上的奇函数,当(其中是自然对数的底,
(1)求的解析式;
(2)设,求证:当时,
(3)是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(文科)已知抛物线为直线上任意一点,过点作抛物线的两条切线,切点分别为,.
(Ⅰ)当的坐标为时,求过三点的圆的方程;
(Ⅱ)证明:以为直径的圆恒过点.

(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.
(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

(文科)已知△ABC的两顶点A、B分别是双曲线2x2﹣2y2=1的左、右焦点,且sinC是sinA、sinB的等差中项.
(Ⅰ)求顶点C的轨迹T的方程;
(Ⅱ)设P(﹣2,0),M、N是轨迹T上不同两点,当PM⊥PN时,证明直线MN恒过定点,并求出该定点的坐标.

(理科)已知动圆C与圆相外切,与圆相内切,设动圆圆心C的轨迹为T,且轨迹T与x轴右半轴的交点为A.
(Ⅰ)求轨迹T的方程;
(Ⅱ)已知直线l:y=kx+m与轨迹为T相交于M、N两点(M、N不在x轴上).若以MN为直径的圆过点A,求证:直线l过定点,并求出该定点的坐标.

(文科)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且过点(3,﹣1).
(1)求椭圆C的方程;
(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PA=PN,再过P作直线l′⊥MN,证明:直线l′恒过定点,并求出该定点的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号