(本小题满分12分) 已知m=(cosωx+sinωx,cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=m·n,且f(x)的对称中心到f(x)的对称轴的最近距离不小于. (I)求ω的取值范围; (II)在△ABC中,a,b,c分别是内角A,B,C的对边,且a=1,b+c=2,当ω取最大值时,f(A)=1,求△ABC的面积.
已知过抛物线的焦点的直线交抛物线于,两点.求证: (1)为定值; (2) 为定值.
已知函数和的图像关于原点对称,且. (1)求的表达式; (2)若在上是增函数,求实数的取值范围.
已知是上的奇函数,且当时,. (1)求的表达式; (2)画出的图象,并指出的单调区间.
设函数 (1)若时,函数有三个互不相同的零点,求的取值范围; (2)若函数在内没有极值点,求的取值范围; (3)若对任意的,不等式在上恒成立,求实数的取值范围.
无论为任何实数,直线与双曲线恒有公共点. (1)求双曲线的离心率的取值范围; (2)若直线过双曲线的右焦点,与双曲线交于两点,并且满足,求双曲线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号