(本小题满分12分)在调查的名上网的学生中有
名学生睡眠不好,
名不上网的学生中有
名学生睡眠不好,利用独立性检验的方法来判断是否能以
的把握认为“上网和睡眠是否有关系”.
附:;
参考数据
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
,
.
(本题满分14分)
已知关于的方程
的解集为
,方程
的解集为
,若
,求
(本小题满分14分)
已知二次函数满足:
,
,且该函数的最小值为1.
⑴ 求此二次函数的解析式;
⑵ 若函数的定义域为
=
.(其中
). 问是否存在这样的两个实数
,使得函数
的值域也为
?若存在,求出
的值;若不存在,请说明理由.
(本小题满分13分)
有一批单放机原价为每台80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。甲商场的优惠办法是:买一台减4元,买两台每台减8元,买三台每台减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。某单位欲为每位员工买一台单放机,问选择哪个商场购买比较划算?
(本小题满分12分)
已知函数
1)讨论并证明函数)在区间
的单调性;
2)若对任意的恒成立,求实数
的取值范围。
(本小题满分12分)
已知函数
1)求的定义域与值域;
2)判断的奇偶性;
3)讨论的单调性。