游客
题文

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求不全被选中的概率.
下面的临界值表供参考:


0.15[
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7. 879
10.828

 (参考公式:,其中)

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

(本小题满分12分)已知函数,其中为常数,且
(1)若,求函数的表达式;
(2)在(1)的条件下,设函数,若在区间上是单调函数,求实数的取值范围;
(3)是否存在实数使得函数上的最大值是4?若存在,求出的值;若不存在,请说明理由.

(满分12分)已知是定义在R上的奇函数,且当时,
(Ⅰ)求的解析式;
(Ⅱ)问是否存在这样的正数a, b使得当时,函数的值域为,若存在,求出所有a, b的值,若不存在,说明理由.

(本小题满分12分)已知函数 f(x)=4x2-4ax+(a2-2a+2).
(1)若a=1, 求f(x)在闭区间[0,2]上的值域;
(2)若f(x)在闭区间[0,2]上有最小值3,求实数a的值.

(本小题满分12分 )已知定义在区间(﹣1,1)上的函数是奇函数,且
(1)确定的解析式;
(2)判断的单调性并用定义证明;

(本题10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求A∩B,(∁RB)∪A;[
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值范围构成的集合

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号