为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为。
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,
还喜欢打乒乓球,
还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求
和
不全被选中的概率.
下面的临界值表供参考:
![]() |
0.15[ |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7. 879 |
10.828 |
(参考公式:,其中
)
如图,是抛物线
的焦点,
为准线与
轴的交点,直线
经过点
.
(Ⅰ)直线与抛物线有唯一公共点,求
的方程;
|
(Ⅱ)直线与抛物线交于
、
两点记
、
的斜率分别为
,
.
函数.
(Ⅰ)当时,求
的最小值;
(Ⅱ)当时,求
的单调区间.
已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将三角形AED折起,使DB=,
如图,O,H分别为AE、AB中点.
(Ⅰ)求证:直线OH//面BDE;(Ⅱ)求证:面ADE
面ABCE;
(Ⅲ)求二面角O-DH-E的余弦值.
某次有奖竞猜活动设有、
两组相互独立的问题,答对问题
可赢得奖金3000元,答对问题
可赢得奖金6000元.规定答题顺序可任选,但只有一个问题答对后才能解答下一个问题,否则中止答题,假设你答对问题
、
的概率依次为
.
(Ⅰ)若你按先后
的次序答题,写出你获得奖金的数额
的分布列及期望
;
(Ⅱ)你认为获得奖金期望的大小与答题顺序有关吗?证明你的结论.
已知函数的图像关于直线
对称,当
,且
,
求的值.