(本小题满分12分)
某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名学生进行调查,下表是这n名学生的日睡眠时间的频率分布表。
序号(i) |
分组(睡眠时间) |
频数(人数) |
频率 |
1 |
[4,5) |
6 |
0.12 |
2 |
[5,6) |
|
0.20 |
3 |
[6,7) |
a |
|
4 |
[7,8) |
b |
|
5 |
[8,9) |
|
0.08 |
(1)求n的值.若,将表中数据补全,并画出频率分布直方图.
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是5)作为代表.若据此计算的上述数据的平均值为7.2,求
的值,并由此估计该学校学生的日平均睡眠时间在7.5小时以上的概率.
设函数f(x)=4x3+ax2+bx+5在x=与x=-1时有极值.
(1)写出函数的解析式;
(2)指出函数的单调区间;
(3)求f(x)在[-1,2]上的最大值和最小值.
从参加高一年级迎新数学竞赛的学生中,随机抽取了名学生的成绩进行统计分析.
(1)完成下列频率分布表,并画出频率分布直方图;
(2)从成绩是[50,60)和[90,100)的学生中选两人,求他们在同一分数段的概率.
分 组 |
频数 |
频率 |
![]() |
2 |
|
![]() |
10 |
|
![]() |
20 |
|
![]() |
15 |
|
![]() |
3 |
|
合计 |
50 |
已知点P在圆x2+y2=1上运动,过点P作x轴的垂线,垂足为D,点M在DP的延长线上,且有|DP|=|MP|.(1)求M点的轨迹方程C;(2)已知直线l过点(0,),且斜率为1,求l与C相交所得的弦长.
如图所示,在四棱锥P—ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.
(1)求证:EF∥平面PAD;
(2)求证:平面PAB⊥平面PCD.
已知数列{an}是等差数列,且a3=5,a2+a7=16.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前
项和Sn.