某教师出了一份共3道题的测试卷,每道题1分。全班的3分、2分、1分和0分的学生所占的比例分别为30%,50%,10%和10%。
(1)若全班共10人,则平均分是多少?
(2)若全班共20人,则平均分是多少?
(3)若该班人数未知,能求出该班的平均分吗?
已知函数(e为自然对数的底数).
(1)设曲线处的切线为
,若
与点(1,0)的距离为
,求a的值;
(2)若对于任意实数恒成立,试确定
的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
如图,椭圆的右焦点与抛物线
的焦点重合,过
且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足
(O为坐标原点),求实数t的取值范围.
已知数列是首项和公比均为
的等比数列,设
.
(1)求证数列是等差数列;
(2)求数列的前n项和
.
如图,在四棱锥P-ABCD中,底面ABCD为菱形,,Q为AD的中点.
(1)若PA=PD,求证:平面平面PAD;
(2)点M在线段上,PM=tPC,试确定实数t的值,使PA//平面MQB.
已知函数..
(1)设曲线处的切线为
,点(1,0)到直线l的距离为
,求a的值;
(2)若对于任意实数恒成立,试确定
的取值范围;
(3)当是否存在实数
处的切线与y轴垂直?若存在,求出
的值;若不存在,请说明理由.