等差数列不是常数列,且
,若
构成等比数列.
(1)求;
(2)求数列前n项和
求函数.
(1)求的周期与值域;
(2)求在
上的单调递减区间.
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数a的值;
(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.
注:e是自然对数的底数.
已知椭圆C:(a>0,b>0)的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+
=0相切.又设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:直线AE与x轴相交于定点Q;
(III)求的取值范围.
若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图).
(Ⅰ)若,求证:AB//平面CDE;
(Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.