游客
题文

为了提高食品的安全度,某食品安检部门调查了一个海水养殖场的养殖鱼的有关情况,安检人员从这个海水养殖场中不同位置共捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据进行统计得下表.若规定超过正常生长速度(1.0~1.2 kg/年)的比例超过15%,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.

鱼的
质量
[1.00,
1.05)
[1.05,
1.10)
[1.10,
1.15)
[1.15,
1.20)
[1.20,
1.25)
[1.25,
1.30)
鱼的
条数
3
20
35
31
9
2

(1)根据数据统计表,估计数据落在[1.20,1.30)中的概率约为多少,并判断此养殖场所饲养的鱼是否存在问题?
(2)上面捕捞的100条鱼中间,从质量在[1.00,1.05)和[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得的鱼的质量在[1.00,1.05)和[1.25,1.30)各有1条的概率.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(10分)已知函数,且
.(I)求的值;(II)求函数在[1,3]上的最小值和最大值.

椭圆G的两个焦点M是椭圆上一点,且满足
(1)求离心率的取值范围;
(2)当离心率取得最小值时,点到椭圆上的点的最远距离为
①求此时椭圆G的方程;
②设斜率为)的直线与椭圆G相交于不同的两点ABQAB的中点,问:AB两点能否关于过点Q的直线对称?若能,求出的取值范围;若不能,请说明理由.

已知函数,(为常数,为自然对数的底).
(1)令,求
(2)若函数时取得极小值,试确定的取值范围;
[理](3)在(2)的条件下,设由的极大值构成的函数为,试判断曲线只可能与直线为确定的常数)中的哪一条相切,并说明理由.

[文]若数列的通项公式,记
(1)计算的值;
(2)由(1)推测的表达式;
(3)证明(2)中你的结论.

[理]如图,在正方体中,是棱的中点,为平面内一点,

(1)证明平面
(2)求与平面所成的角;
(3)若正方体的棱长为,求三棱锥的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号