(本小题满分12分)
已知函数,.
(Ⅰ) 求函数在点(1,
)处的切线方程;
(II) 若函数与
在区间
上均为增函数,求
的取值范围;
(Ⅲ) 若方程有唯一解,试求实数
的值.
已知矩阵 ,向量 ,求向量 ,使得 .
如图,圆 与圆 内切于点 ,其半径分别为 与 ,圆 的弦 交圆 于点 ( 不在 上),
求证:
为定值。
设 为部分正整数组成的集合,数列 的首项 ,前 项和为 .已知对任意整数 属于 ,当 时, 都成立。
(1)设
,
,求
的值;
(2)设
,求数列
的通项公式。
已知
,
是实数,函数
,
和
是
的导函数,若
在区间I上恒成立,则称
和
在区间I上单调性一致
(1)设
,若函数
和
在区间
上单调性一致,求实数
的取值范围;
(2)设
且
,若函数
和
在以
,
为端点的开区间上单调性一致,求
的最大值。
如图,在平面直角坐标系
中,
分别是椭圆
的顶点,过坐标原点的直线交椭圆于
两点,其中
在第一象限.过
作
轴的垂线,垂足为
.连接
,并延长交椭圆于点
.设直线
的斜率为
.
(Ⅰ)当直线
平分线段
时,求
的值;
(Ⅱ)当
时,求点
到直线
的距离;
(Ⅲ)对任意
,求证:
.