(本小题满分14分)为研究我校高二年级的男生身高,随机抽取40名男生,实测身高数据(单位:厘米)如下:
171 173 163 169 166 167 168.5 160 170 165
175 169 167 156 165.5 168 170 184 168 174
165 170 174 161 177 175.5 173 164 175 171.5
176 159 172 181 175.5 165 163 173 170.5 171
(I)依据题目提示作出频率分布表;
(Ⅱ)在(I)的条件下画出频率分布直方图并且画出其频率分布折线图;
(Ⅲ)试利用频率分布的直方图估计样本的平均数。
【解】(I)最低身高156cm,最高身高184cm,确定组距为4,作频率分布表如下:
身高(cm) |
频数累计 |
频数 |
频率(%) |
![]() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]() |
|
|
|
(Ⅱ)频率直方图如下:
已知函数g(x)="aln" x·f(x)=x3 +x2+bx
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.
已知椭圆C:=1(a>0,b>0)的离心率与双曲线
=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin
·x+cos
·y-l=0相切(
为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足(O为坐标原点),当
时,求实数t取值范围.
已知数列{an}满足a1>0,an+1=2-,
。
(1)若a1,a2,a3成等比数列,求a1的值;
(2)是否存在a1,使数列{an}为等差数列?若存在,求出所有这样的a1,若不存在,说明理由。
如图(1),在三角形ABC中,BA=BC=2√乏,ZABC=900,点0,M,N分别为线段的中点,将AABO和AMNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:AB//平面CMN;
(2)求平面ACN与平面CMN所成角的余
(3)求点M到平面ACN的距离.
以下茎叶图记录了甲、乙两组各三名同学在期末考试的数学成绩,乙组记录中有一个数字模糊,无法确认.假设这个数字具有随机性,并在图中以a表示.
(1)若甲、乙两个小组的数学平均成绩相同,求a的值;
(2)求乙组平均成绩超过甲组平均成绩的概率;
(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,设这两名同学成绩之差的绝对值为X,求随机变量X的分布列和数学期望,