(本小题10分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC.
(1)求证:平面ABFE⊥平面DCFE;
(2)求四面体B—DEF的体积.
已知极坐标方程为ρcosθ+ρsinθ-1=0的直线与x轴的交点为P,与椭圆(θ为参数)交于点A、B,求PA·PB的值.
在极坐标系中,圆C的方程为ρ=2sin
,以极点为坐标原点、极轴为x轴正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数),判断直线l和圆C的位置关系.
在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为
(θ为参数),试求直线l与曲线C的普通方程,并求出它们的公共点的坐标.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A、B两点,求|AB|.
在平面直角坐标系xOy中,若l:(t为参数)过椭圆C:
(φ为参数)的右顶点,求常数a的值.