(满分12分)有时可用函数
描述学习某学科知识的掌握程度.其中表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数a与学科知识有关.
(1)证明:当时,掌握程度的增长量
总是下降;
(2)根据经验,学科甲、乙、丙对应的的取值区间分别为(115,121],(121,127], (127,133].当学习次数相同
时,请确定学科甲、乙、丙在学习中的掌握程度的高低,并说明理由.
(本小题12分)
在中,角A、B、C的对边分别为a.b.c,且
,
,
边上中线
的长为
.
(Ⅰ) 求角和角
的大小;
(Ⅱ) 求的面积.
选修4—5:不等式选讲
若关于的不等式
有解,求实数
的取值范围。
(本小题满分10分)选修4-4:坐标系与参数方程.
已知曲线C:为参数,0≤
<2π),
(Ⅰ)将曲线化为普通方程;
(Ⅱ)求出该曲线在以直角坐标系原点为极点,轴非负半轴为极轴的极坐标系下的极坐标方程.
选修4—1:几何证明选讲
如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连接AE交⊙O于点F,求证:
。
已知函数(
为自然对数的底数).
(1)求的最小值;
(2)不等式的解集为
,若
且
求实数
的取值范围;
(3)已知,且
,是否存在等差数列
和首项为
公比大于0的等比数列
,使得
?若存在,请求出数列
的通项公式.若不存在,请说明理由.