附加题) 某电视台的一个智力游戏节目中,有一道将四本由不同作者所著的外国名著A、B、C、D与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线。每连对一个得3分,连错得一1分,一名观众随意连线,他的得分记作X。
(1)求该观众得分非负的概率;
(2)求X的分布列及数学期望。
如图,直三棱柱
中,点
是
上一点.
⑴若点
是
的中点,求证
平面
;
⑵若平面
平面
,求证
.
已知命题
表示双曲线,命题
表示椭圆.
⑴若命题
为真命题,求实数
的取值范围.
⑵判断命题
为真命题是命题
为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和 “既不充分也不必要条件”中的哪一个).
根据我国发布的《环境空气质量指数
技术规定》(试行),
共分为六级:
为优,
为良,
为轻度污染,
为中度污染,
均为重度污染,
及以上为严重污染.某市2013年11月份
天的
的频率分布直方图如图所示:
⑴该市11月份环境空气质量优或良的共有多少天?
⑵若采用分层抽样方法从
天中抽取
天进行市民户外晨练人数调查,则中度污染被抽到的天数共有多少天?
⑶空气质量指数低于
时市民适宜户外晨练,若市民王先生决定某天早晨进行户外晨练,则他当天适宜户外晨练的概率是多少?
在平面直角坐标系
中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点
的轨迹
的方程;
(2)若
是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.
如图,平面
平面
,
是等腰直角三角形,
,四边形
是直角梯形,
∥AE,

,
,
分别为
的中点.
(1)求异面直线
与
所成角的大小;
(2)求直线
和平面
所成角的正弦值.