已知数列{}的前n项和
满足:
(n∈
)
⑴写出数列{}的前三项
,
,
;
⑵求数列{}的通项公式.
双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线
的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线:
与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得
?
② 是否存在这样的实数,使A、B两点关于直线
对称?若存在,求出
的值;若不存在,说明理由.
如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(I)求证:平面
;
(II)求二面角的余弦值大小;
(III)求证:平面⊥平面
.
已知三次函数在
和
时取极值,且
.
(Ⅰ) 求函数的表达式;
(Ⅱ)求函数的单调区间和极值;
(Ⅲ)若函数在区间
上的值域为
,试求
、n应满足的条件。
设是平面上的两个向量,且
互相垂直.
(1)求λ的值;
(2)若求
的值.
已知数集
具有性质
;对任意的
,
与
两数中至少有一个属于
。
(Ⅰ)分别判断数集
与
是否具有性质
,并说明理由;
(Ⅱ)证明:
,且
;
(Ⅲ)证明:当
时,
成等比数列。