(本小题满分13分)
某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况
(1)求选出的4 人均为选《矩阵变换和坐标系与参数方程》的概率;
(2)设为选出的4个人中选《数学史与不等式选讲》的人数,求
的分布列和数学期望
如图,侧棱垂直底面的三棱柱的底面
位于平行四边形
中,
,
,
,点
为
中点.
(1)求证:平面平面
.
(2)设二面角的大小为
,直线
与平面
所
成的角为,求
的值.
已知函数
(1)求函数的最小值和最小正周期;
(2)设△的内角
对边分别为
,且
,若
与
共线,求
的值.
设为实数,函数
.
(1)当时,判断函数
的奇偶性;
(2)求的最小值;
一块形状为直角三角形的铁皮,直角边长分别为40cm和60cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问:怎样剪,才能使剩下的残料最少?